SYNTHESIS OF 2,2'-BIINDOLYLS BY COUPLING REACTIONS

JAN BERGMAN and NILS EKLUND

Department of Organic Chemistry, Royal Institute of Technology, S-100 44 Stockholm, Sweden

(Recciocd in UK 20 August 1979)

Abstract—Coupling reactions of indoles forming 2,2'-biindolyls have been investigated. 2-Iodo-N-methyl-indole and unactivated copper gave N,N'-dimethyl-2.2'-biindolyl whereas activated copper vielded N-methyl-indole and the **symmetrical trisindolobenzene 5. A mechanism involving the** elimhation of **copper hydride to form a hetaryae** intermediate is suggested.

Coupling of N-benzenesulfonyl-2-lithioindole with CuCl₂ yielded 2,2'-biindolyl after hydrolysis. N-methyl-2lithioindole likewise gave N,N'-dimethyl-2,2'-biindolyl.

In spite of its relation to indigo **(1). 2,2'-biindolyl(2a) and simple** derivatives such as 2h are relatively inaccessible compounds. All attempts^{1,2} (e.g. Wolff-Kishner reduction) to convert **1** to 2. have so far been unsuccessful. A rather capricious³⁴⁶ Madelung cyclization of oxalyl-otoluidide seems to be the only route available except for a two-fold Fischer cyclization of the bis-phenylhydraxone (3b) to impure N,N'-dimethyl-2,2'-biindolyl (2b) in a modest yield.' In our hands attempted cyclixation of 3a gave a complex mixture lacking 2a.

Very few studies^{3,8} of the chemical properties of $2,2'$ biindolyls have been published and now we wanted to study some cycloadditions as well as interaction of reagents such as $SeO₂$, $SeOCl₂$ and $TeCl₄$, which might yield compounds of type 4 (X = Se or Te). Such planar electron-rich systems might be of interest as donors in e.g. "organic metals"? A prerequisite for such studies is, however, ready access to the starting materials, and in this paper we report the results of some coupling reactions of simple indoles leading to 2,2'-biindolyls.

Copperpmnofad couplings. Iodination of N-methyl-2 lithioindole (α reagent often^{10.11} used in synthetic indole chemistry) readily afforded 2-iodo-N-methylindole, which on coupling with unactivated copper gave N,Ndimethyl-2.2'.biindolyl **(2b)** whereas activated" copper afforded N-methylindole and the known¹³ trimeric com-

pound (5) in the relative ratio 3 : 1. Both reactions gave excellent yields.

These results might be explained using the reactions outlined in Scheme 1: With activated copper (in excess) 2-iodo-M-methylindole is quickly depleted in reaction **(1).** N-Methyl-2-indolyl copper is consumed in reaction (3) rather than reaction (4), which was corroborated by an independent experiment. The heating of N-methyl-2-indolyl copper, generated from 2-lithio-N-methylindole and cuprous bromide, gave 5 and N-methylindole. With unactivated copper N-methyl-2-indolyl copper is formed relatively slowly and reaction (2) can compete with reaction (3).

In accordance with this formulation iodobenxene was found to react with N-methyl-2-indolyl copper to give N-methyl-2-phenylindole. (For some related unsymmetrical Cu-promoted coupling reactions, see Refs 14-16). In reaction (3) the intervention of copper hydride seems not unlikely and in a separate experiment it was shown that heating of N-methyl-2-indolyl copper with copper hydride yielded N-methylindole. In this connection the reported" thermal decomposition of alkyl and vinyl copper derivatives into alkene and alkyne respectively and copper hydride is of interest. Furthermore the formation of copper hydride seemed to induce reductions."

It should be noted that N-methyl-2-indolyl copper is represented as monomeric just for reasons of simplicity. From studies on related organocopper compounds^{18.19} it seems likely that the best representation is a cluster of the general formula R_nCu_m , a fact which might have bearings on the facile trimerization.

N-Methyl-2-indolyl copper was found to be a relatively stable and rather insoluble compound that could be stored for several weeks at room temperature. In this connection the report of Müller¹³ concerning several stable organometallic derivatives, such as Be, MO and Tl of N-methyl-3chloroindole is of interest. On the other hand N-methyl-3-chloro-2-indolyl copper was reported¹³ to be comparatively unstable.

2-Iodo-N-methylindole (a low melting solid) is relatively unstable, especially in the presence of acids, and storage (even in refrigerator) resulted in the formation of the hydroiodide of N,N'-dimethyl-2,3'-bi-indolyl. Treatment with potassium hydroxide in ethanol readily gave the free base 6. Interestingly Kunori²⁰ has made similar observations in connection with bromination studies of N-methylindole.

The high yield of the symmetrical trimeric compound 5 from N-methyl-2-iodoindole and copper is intriguing. No other haloarene studied so far in the Ullman reaction
seems to have yielded triphenylenes. Certain seems to have yielded triphenylenes. Certain dihaloarenes notably 1,2,3,4-tetrafluoro-5,6-diiodobenzene and 1-chloro-2-iodobenzene form triphenylenes in modest yield when treated with copper-bronze.²¹ Dehydroarenes (arynes) have not been suggested as intermediates in these reactions. Although hetarynes with a 5-membered ring, including pyrrolyne²² and N-methylindolyne¹³ have frequently been suggested, questioned and recalled $(cf$ ref. 23), it is tempting to imply such a species as an intermediate in the present case, because by donation-backdonation, according to the Dewar-Chatt-Duncanson model, \sim as indicated in Scheme 2, the intermediate should be stabilized considerably. Investigations on Cu(0)-ethylene complexes²⁶ support this view. A mechanism involving free radicals seems less likely in view of the relative cleanliness of the reactions.
The hetaryne-Cu complex might then undergo a step-

wise trimerixation yielding 5. The unsymmetrical isomer (7a) is only formed in small amounts ($<2\%$). Attempts to

increase the yield of **7a** by addition of 2b to the reactants failed. Furthermore, addition of derivatives of 2c failed to yield 7b. Thus we conclude that an "irregular" trimerization rather than a cycle-addition of 2b to a hetaryne, should account for the small amounts of 7a formed. The unsymmetrical isomer 7a has been synthesized by several routes (cf following paper).

Müller¹³ has made several attempts to "trap" Nmethyl-indolyne. An example using tetraphenylcyclopentadienone (X) is given in Scheme 3. We have now found that addition of activated copper-bronze instead of (X) gave the symmetrical trimer 5 in good yield.

In connection with the discussion of the possible involvement of a N-methylindolyneCu complex in these reactions it should be mentioned that indirect evidence for the intervention of a benzyne-Ni complex has been obtained in connection with some carbon-nickel additions to benzyne.²⁷ Furthermore benzyne-Ag-olefin adducts have been suggested to account for unusual products from certain Ag-promoted benxyne-olefin cycloadditions²⁸ and recently Schrock et $al.^{28b'}$ reported the synthesis and molecular structure of monomeric niobium- and tantalum benxyne complexes.

Coupling of Grignard-reagents and organolithium compounds with reagents such as Ag , CuCl₂ and CoCl₂ is a common procedure for the synthesis of biaryls,² which worked well in the present case. Some results are summarized in Scheme 4, where a mechanism involving a reductive elimination of a diarylated Cu(II)-species is indicated. In any case the intermediate cannot be identical with the species encountered in the reaction with N-methyl-2-lithioindole and cuprous bromide, because different products are obtained.

2,2'-Biindolyl (2a) could also be obtained by the route given in Scheme 4. Thus lithiation of N-benxenesulfonylindole (cf Ref. 31) followed by $CuCl₂$ afforded the coupled product 2d, which on alkaline hydrolysis gave 2a. In this connection it should be mentioned that the original synthesis due to Madelung,³ was successful in our hands provided that the reaction temperature was kept at 320" rather than the indicated 360'.

Couplings promoted by palladium acetate. Oxidative coupling promoted by palladium acetate has been used to convert benxofuran to 2,2'-bibenxofuranyl in a respect-

did not, however, afford any shortcut route to 2b or its interest.
3.3'-isomer, because a very complex mixture including N-Acylindoles were found to be a more suitable sub-3,3'-isomer, because a very complex mixture including N-Acylindoles were found to be a more suitable sub-
the 3.3'- and 2.3'-coupled products (cf Ref. 33) was strate in Pd(OAc), induced couplings, thus e.g. N,N'the $3,3'$ - and $2,3'$ -coupled products (cf Ref. 33) was obtained and 2b was not formed at all. The main product (20%), which could be isolated by crystallixation, was identified as 8a. The methylene bridge must have been tramolecular coupling reactions, e.g. the conversion of
formed by oxidative demethylation to an equivalent of 3-benzoyl-N-methylindole in 60% yield to 5-methyl-5,10formed by oxidative demethylation to an equivalent of 3-benzoyl-N-methylindole in 60% yield to 5-methyl-5,10-
formaldehyde, which then condenses with N-methylin-
dibydroindenol. 2-bindol-10-one. Alkaline hydrolysis of formaldehyde, which then condenses with N-methylin-
dole to vield g_a . The formation of g_b could be detected g_a , which also could be prepared from 2.2'-biindolyl and dole to yield 8a. The formation of 8b could be detected 9, which also could be prepared from 2.2'-biind
by tlc. Interestingly N.N-dimethyl-aniline has been N.N'-carbonylimidazole, afforded 2.2'-biindolyl. by tlc. Interestingly N,N-dimethyl-aniline has been N,N'-carbonylimidazole, afforded 2,2'-biindolyl.
reported to undergo a similar oxidative demethylation In some preliminary experiments to cyclise 2b with no 2.2'-biindolyl. In this connection a recent patent similar to the known⁴¹ conversion of indole to 3 claiming good vields of 3.3'-biindolyl by oxidative coup-

able yield.³² Replacing benzofuran with N-methylindole $\lim_{\Delta t}$ of indole in pyridine induced by cupric sulfate is of did not, however, afford any shortcut route to 2b or its interest.

carbonylindole gave a respectable yield of 9. Itahara and Sakakibara have recently $\frac{40a}{10a}$ reported similar in-
tramolecular coupling reactions, e.g. the conversion of

reported to undergo a similar oxidative demethyhttion In some prelimimuy experiments to cychse 2b with yielding 9 with a wide range of reagents³⁴⁻³⁶ including SeOCl₂ and TeCL respectively, the known" compound palladium acetate.³⁹ Oxidative coupling of indole with N,N'-dimethyl-3,3'-dichloro-2,2'-bi-indolyl was isolated palladium acetate also gave a complex mixture, contain-
ing small amounts of 3.3'-biindolyl and 2.3'-biindolyl, but to form 3.3'-diindolyl selenide by reaction with SeO₂ ing small amounts of 3,3'-biindolyl and 2,3'-biindolyl, but to form 3,3'-diindolyl selenide by reaction with SeO₂
no 2.2'-biindolyl. In this connection a recent patent similar to the known⁴¹ conversion of indole to 3,

 $CH₃$

ē

EXPERIMENTAL.

Mps were **determined on a micro hot stage m.p. apparatus and are uncorrected. IR spectra were recorded with a Perkin Elmer 421 fR spectropbotometer as KBr discs. 'H-NMR spectra were recorded with a Varian-A60 instrument Ah chemical shifts are** related to TMS ($\delta_H = 0$). Mass spectra were recorded with LKB **9WO instnunent (direct inlet, 70 eV).**

2-lodo-N-mdhylindde. **BuJi (45 ml, 28% in hexane) was ad**ded under N_2 to a stirred soln of N-methylindole (13.1 g, 0.1 mol) in dry ether (300 ml) at 0°. After addition was complete the soln was refluxed for 3 hr, cooled to $+15^{\circ}$ and iodine (25.4 g, 0.1 mol) was added in portions. $Na₂SO₃$ (300 ml, aq. 5%) was then added and the ether phase separated, washed with water and dried. The oil obtained by evaporation was dissolved in light petrokum (40-60°) and when cooled to -25° produced crystals of 2-iodo-Nmethyl-indole, yield 19.8 g (77%) m.p. 76-77°. MS[m/e(%rel. int.)]:258(M + 1,10), 257(M, 100) 130(7), 129(11), 128.5(15), 115(7), 89(74), 63(10), 51(6), 39(7). Only peaks higher than 5% are listed.

N-&thy/-2-tidy/ copper. N-Methylindok was lithiated as described (0.02mol scale). **Freshly prepared, dried cuprous bromide (2.87g, 0.02 mol) was then added in portions to the** stirred mixture at 25°. After 24 hr the light brown solid was collected, washed with dry ether and then stored under N₂ in the **refrigerator.**

Reaction of N-methyl-2-indolyl copper with iodobenzene. N-**MethyI-2-moldyl copper (1.94 g) and iodobenzene (10.0 g) in pyridine (30 ml) were relluxed under N₂ for 4 hr. The solvent and an excess of iodobenxene were removed under reduced pressure. The residue was extracted with light petroleum. Cooling (finally** to -30") produced crystals of N-methyl-2-phenyLindok. yield 1.2 g (60%) m.p. $100-101^{\circ}$ (lit. $400-101^{\circ}$).

Reaction of N-methyl-2-indolyl copper with copper hydride. N-*Methyl-2-indolyl copper (1.94g) and copper hydride⁴³ (5g) were* mixed and heated to 180° under N₂ for 30 min. The mixture was **extracted with light petrokum and the extract evaporated and distiJkd to ykld N-methylindok** 1.1 g (83%).

N,N¹-dimethyl-2,2'-biindolyl (2b). N-Methylindole was lithiated, as described. Dry cupric chloride (6.92 g, 0.05 mol) was then added at 25" in portions to the well-stirred mixture. After addition was complete and after a period of reflux (1 hr) water was added. The ether phase was separated, dried (Na₂SO₄) and **evaporated. The residue crystalhxed from** EtOAc **yielded 93g (73%) m.p. 182-184" (lit.' 15>157").** A sample kindly **provided by** Dr. Fränkel was impure, but did contain N,N-dimethyl-2,2'-biindolyl, which could be isolated by preparative tlc. NMR (CDCl₃): δ_H 3.65(6, NCH₃, s), 6.62(2, 3-H s), 7.0-7.8(8, arom., m). MS **[m/c(% tel.** int.)l: 261(Mt I, 20), *26O(M, MO), 259W). 258(7), 245(12), 245(9), 217(9), 144(7), 138(18), 129(7).* Only peaks high
than 6% are listed, m⁺: 230.8(260→245).

Method B: 2-iodo-N-methylindole (2.57g) and unactivated copper-bronze $(15g)$ were heated under N_2 for 15 min at 205°. **The cooled mixture was extracted with hot EtOAc. Concen**tration and final cooling produced crystals, yield 0.86 g (66%) m.p. 182-184^e.

Sym(tris N-methylindolo) benzene (5). Method A. Procedure B above was used (0.02 mol scale) with the exception that above was used (0.02mol scale) with the exceotion that activated¹² copper-bronze was used, yield 0.52g (81%) m.p. **265-26T (lit." 26P). A sample kindly provided by Professor** Wittig was identical with our product. The co-product, N-

 $b \ R_1 = CO_3$, $R_2 = CH_3$

methylindole, could be **isolated by distillation of the evapornted** mother-liquor. MS: [m|e(% rel. int.]: 388(M + 1, 28), 387(M, 100), rryll), 372@), 357(19), 342(10), 193.5(22). 186(11), 178.5(14). Only peaks higher than 9% are listed.

IR spectm: =H), 1575. 1480, 1330, 1250, 745, 72Ocm-'. NMR(CDCl₃): δ_H 4.25(9, NCH₃, s), 7.0-7.8(12, arom., m). **Method B. N-Methyl-2-indolyl copper (1.94g) was heated (208') under argon for 1 hr. The mixture** extracted with EtOAc produced 5. yield 0.24g (75%) m.p. 245-267". Method C. The mercury-containing compound¹³ (3.74g) and activated copperbronze (10 g) were heated under N_2 for 1 hr at 205° and then extracted with EtOAc as described above, yield $0.72 g$ (56%) m.p. 265-267.

N,N'LXp~yfsu/phonyl-2J-biindofyl (24). t-BuIi (0.015 mol $=75$ ml of a 2 molar soln in hexane) was added to a soln of N-phenylsulfonylindole 2.60g (0.01 mol) in dry ether (200 ml). After stirring for 1 hr at room temp., dry fine-divided cupric chloride $(3 g)$ was added and the mixture was refluxed for 2 hr. The mixture was poured into water (500 ml) and the organic layer was washed with water, dried and evaporated under reduced pressure. MeOH (1Oml) was added to the resuiting yellow oil and the precipitated light brown crystals were filtred off, yield 0.60 g (23%). The crude product was purified by preparative tlc, using $CH_2Cl_2 + 5%$ MeOH as eluent, producing white crystals, m.p. 229-231°. IR: 1440, 1375, 1185, 1090, 720, 680, 640. MS [m/c (46 tel. int.)]: 512(M. **1.7), 256(100), 192(26), 191(69),** 164(16), 163(16), 95.5(20). Only peaks higher than 15% above mle 50 **are listed (except M').**

2.2~Biimfdy/ (k). **Compound 2d was hydrolysed in a mixture of MeOH 1 and 2 M NaOH (5** : 1) using the method described by Sundberg³¹ for hydrolysis of N-phenylsulfonylindole. The resulting mixture was concentrated in vacuum and upon addition of water the crude 2.2-biindolyl separated as small light brown crystals. A pure sample was obtained by prep tic using CH_2Cl_2 + 5% CH₃OH as eluent, m.p. 311-314° (lit.³ 308-310°). IR: 3405(NH), 1445, 1480. 1343, 780, 755. MS [m/s(%rel. int.)]: $234(M+2, 1.8), 233(M+1, 18.0), 232(M, 100), 231(37.5), 230(90),$ 229(5.8), 204(13.8), 116(21.0), 115§(3.5), 115(5.8), 102§(3.5),
102(10.8), 101§(3.3), 90(5.0), 89(11.0), 88(4.0). Only peaks higher than 3% above m/e 70 are listed.

Reaction of N-methylindole with Pd(OAc)₂. N-Methylindole $(1.31 g)$ and Pd $(OAc)_2$ $(1.12 g)$ in AcOH (30 ml) were refluxed for 8 hr. The mixture was evaporated and residue extracted with hot MeOH and filtered. Upon cooling, crystals of 8a were obtained, yield 0.24 **g** (26%) m.p. 112–113° (lit.** 112.5–113°).

N.N',-Dimethyl-3,3'-dichloro-2,2'-biindolyl. To a soln of N,N'dimethyl-2,2'-biindolyl $(0.20 g)$ in dry ether $(10 ml)$ an excess of SeOCl_2 (0.60 g) was added. The mixture was stirred at room temp. for 2 hr and then quenched with water. The organic phase was separated, washed with water, dried and evaporated to dryness. The residue was sublimed in vacuum, yield 0.08 g (32%) m.p. 189-191° (lit." 183-1910). IR: 3850.2938. 1460, 1325, 1234, 737. MS [m/e(% rel. int.)]: 330(M + 2, 67), 328(M, 100), 293(32), 292(22), 258(70), 257(54), 256(23), 242(21), 164(22), 129(24). Only pcaks higher than 20% above m/e 100 are listed. A sample kindly provided by Professor G. Wittig, and originally prepared by **Müller,¹³** was identical with our product.

N.N'-Dimethyl-2,3'-biindolyl. N-Methyl-2-iodoindole (10 g) stored for 6 months was dissolved in hot MeOH (lOOmI) and

water (IO ml) containing KOH (log). Tbe mixture was filtered **hot and the crystals obtained** upon cooling were collected, washed with water and dried, yield 3.5 g (69%) m.p. 137-138" (lit. m.p. 134-135°,²⁰ 133-135^{o45}). NMR (CHCl₃): δ_H 3.69(3, NCH₃, s), 3.79(3, NCH₃, s), 6.66(1, 3-H, s), 7.1-7.9(9, arom., m).

Synthesis of *compound* 9. N,N'-Carbonylindole⁴⁶ (1.30 g) and $Pd(OAc)_2$ (1.16g) in AcOH (15 ml) was refluxed for 6 hr. The Pd(0) formed was filtered off and the filtrate concentrated to ca 5 ml: The crystals formed on cooling were collected washed with MeOH and dried, yield 1.08 g (84%), m.p. 293-294°. IR 1760 (C=0) (as compared⁴⁶ with 1708 cm⁻¹ in the starting material). MS|m|e(% rel. int.)|: 259(M + 1, 25), 258(M, 100), 230(32), 144(14), 129(16), 116(22), 89(11). Only peaks higher than 10% above m/r 50 are listed. m^* : 205.0(258 \rightarrow 230).

Hyddysis of compound 9. Compound 9 (258mg) was refluxed in EtOH (15 ml), water (5 ml) and KOH (0.5 g) for 1hr. The solid formed on cooling was collected, dried (2% mg, 89%) and identified as 2,2'-biindolyl.

REFERENCES

- ¹ W. Borsche and R. Meyer, *Ber. Disch. Chem. Ges.* 54, 2854 (1921); ^bR. Meyer, *Diss.* Göttingen (1920).
- ²J. Bergman, B. Egestad and N. Eklund, Tetrahedron Letters 3147 (1978).
- ³W. Madelung, Liebigs Ann. 405, 58 (1914).
- ⁴P. Seidel, *Ber. Dtsch Chem. Ges. 71*, 788 (1944).
- ⁵S. A. Faseeh and J. Harley-Mason, J. Chem. Soc. 4141 (1957).
- ⁶H.-Ch. Steinmetzer, Diss. p. 41. Würzburg (1973).
- 'J. Fränkel, Diss. Aachen (1965).
- ⁸W. Madelung and F. Hager, Ber. Dtsch. Chem. Ges. 49, 2039 **(1916).**
- **9E_ hf. Engler, V. V. Patel. J. R Andersen, R R Schumaker and** A. A. Fukushima, *J. Am. Chem. Soc.* 100, 3769 (1978), and Refs therein.
- 10 A. B. Levy, J. Org. Chem. 43, 4684 (1978) and Refs therein.
- ¹¹J. Kebrle, A. Rossi and K. Hoffmann, *Helv. Chim. Acta* 41, 907 (1959).
- ¹²A. I. Vogel, *Practical Organic Chemistry* (3rd Edition), p. 192. Longmans, London (1956).
- ¹³H. Müller, *Diss.* Heidelberg (1964).
- ¹⁴C. Ullenius, *Diss*. Gothenburg (1973).
- ¹⁵N. Gjös, *Diss.* Lund (1971).
- ¹⁶Th. Kauffmann, Angew. Chem. 91, 1 (1979).
- ¹⁷H. O. House and J. C. DuBose, *J. Org. Chem.* 40, 788 (1975), and Refs therein.
- ¹⁸G. Costa, A. Puxeddu, A. Camus and N. Marsich, J. Organometal Chem. 160, 353 (1978), and Refs therein.
- ¹⁹H. K. Hofstee, J. Boersma and G. J. M. van der Kerk, J. Organometal Chem. 144, 255 (1978), and Refs therein.
- ²⁰^aM. Kunori, Nippon Kaguku Zasshi 83, 836, 839 (1962); ⁵ J. A. Janke, *Diss.* p. 87. Univ. of Minnesota, Minneapolis (1970).
- $2^{1a}P$. E. Fanta, Synthesis 9 (1974); bP . E. Fanta, Chem. Rev. 64,
- 613 (1964); P. E. Fanta, Chem. Rev. 38, 139 (1946).
- ²²R. H. Brown, *Diss*. New York University (1975).
- ²³H. I. den Hertog and H. C. van der Plas, *Chemistry of Acety*-
- lene (Edited H. G. Viebe), p. 1149. New York, Dekker (1969). ²⁴J. Chatt and L. A. Duncanson, *J. Chem. Soc.* 2939 (1953).
- 25 M. J. S. Dewar, Bull. Soc. Chim. Fr C71 (1951).
- ²⁶H. Huber, D. McIntosh and G. A. Ozin, J. Organometal. Chem. **112, C50 (1976).**
- ²⁷ D. P. Kuhlman, *Diss.* University of North Dakota (1970).
- 28a P. Crews and M. Loffgren, *Tetrahedron Letters* 4697 (1971); ^b S. J. McLain, R. R. Schrock, P. R. Sharp, M. R. Churchill and W. J. Youngs, 1. *Am. Chem. Sot.* 101,264 (1979).
- ²⁹L. F. Elsom, J. D. Hunt and A. McKillop, Organometal Chem. *Rev. IA,* 135 (1972).
- mK. Tamao, M. Kumada, S. Akutagawa and S. Otsuka, *Kagakm No R@i* 117.45 (1977).
- $3!R$, J. Sundberg and H. F. Russell, J. Org. Chem. 38, 3324 (1973).
- ³²A. Kasahara, T. Izumi, M. Yodono, R. Saito, T. Takeda and T. Sugawara, *Bull. Chem. Soc. Jap.* 46, 1220 (1973).
- ³³E. S. Rudakov and V. M. Ignatenku, *Dokl. Akad. Nauk SSSR* 241, 148 (1978).
- ³⁴J. M. Bronsdijk, *Diss. Leiden* (1965).
- ³⁵W. Michler and H. Walder, *Ber. Dtsch Chem. Ges.* 14, 2175 (1881).
- ³⁶C. Choo Yin and A. J. Deeming, J. Organometal. Chem. 144, 351 (1978).
- nA. G. Giumanini **and** M. M_ Musiani. Z Naturfonch. **32B, 1314 (19n).**
- ³⁸A. Arnoldi, G. Galliani, B. Rindone and P. L. Beltrame, Gazz. Chim. Ital. 108, 127 (1978).
- $\frac{39T}{100}$. Sakakibara, J. Kotobuku and Y. Dogomori, *Chem. Lett.* 25
- (1977).
^{40a} Japan Kokai 76 19.764; *Chem. Absts.* 85: 159874 (1976); ^{*}T. Itahara and T. Sakakibara, *Heterocycles* 12, 148 (1979).
- "J. Bergman, *Acta Ghan. Scamf. 22,* 1883 (1968).
- OH. M. Kissman, D. W. Farnsworth and B. Witkop, J. *Am. chan. sot.* 14.3948 (1952).
- 43J. A. Dilts and D. F. Shriver, Ibid. 90, 5769 (1968).
- ⁴⁴E. Leete. *Ibid.* 81, 6023 (1959).
- $45A$. Da Settimo and E. Nannipieri, J. Org. Chem. 35, 2546 (1970).
- Y. Bergman, R G&son and B. Sj&erg, 1. *Het. Chem.* 14.1123 (1977) .